Context Free Grammars and Induction
 Second Inductive Theorem Proving Festival, 2015

Dan Rosén

Chalmers University of Technology

Context Free Grammars and Induction

- Unambiguity proving of a CFG is an induction problem
- Recursion only by simple structural induction
- Can require very complicated lemmas

Expression grammar

$$
E::=(E+E)|x| y
$$

Expression grammar

$$
\begin{aligned}
& E::=(E+E)|x| y \\
& \text { data } E=\text { Plus } E E|E X| E Y \\
& \text { data Token }=C|D| P|X| Y \\
& \text { show }:: E \rightarrow[\text { Token }] \\
& \text { show }(\text { Plus a } b)=[C]+\text { show a }+[P]+\text { show } b+[D] \\
& \text { show } E X \quad=[X] \\
& \text { show } E Y \quad=[Y]
\end{aligned}
$$

Expression grammar

$$
\begin{aligned}
& E::=(E+E)|x| y \\
& \text { data } E=P l u s E E|E X| E Y \\
& \text { data Token }=C|D| P|X| Y \\
& \text { show }:: E \rightarrow[\text { Token }] \\
& \text { show }(P l u s \text { a } b)=[C]+\text { show a }+[P]+\text { show } b+[D] \\
& \text { show } E X \quad=[X] \\
& \text { show } E Y \quad=[Y] \\
& \forall \text { s } t . \text { show } s=\text { show } t \Longrightarrow s=t \\
& \forall \text { s } t . s \neq t \Longrightarrow \text { show } s \neq \text { show } t
\end{aligned}
$$

Expression unambiguity, step case

$$
\begin{aligned}
& \text { show }(\text { Plus a } b)=[C]+\text { show a }+[P]+\text { show } b+[D] \\
& \text { show } E X \quad=[X] \\
& \text { show } E Y \quad=[Y] \\
& \forall \text { s } t . \text { show } s=\text { show } t \Longrightarrow s=t \\
& \text { assumption : show }\left(\text { Plus } s_{1} s_{2}\right)=\text { show }\left(\text { Plus } t_{1} t_{2}\right) \\
& \text { goal : } \quad \text { Plus } s_{1} s_{2}=\text { Plus } t_{1} t_{2}
\end{aligned}
$$

Expression unambiguity, step case

$$
\begin{aligned}
& \begin{array}{l}
\text { show }(\text { Plus a } b)=[C]+\text { show a }+[P]+\text { show } b+[D] \\
\text { show } E X \quad=[X] \\
\text { show } E Y \quad \\
\forall \text { s } t . \text { show } s=\text { show } t \Longrightarrow s=t \\
\text { assumption : show }\left(\text { Plus } s_{1} s_{2}\right)=\text { show }\left(P l u s t_{1} t_{2}\right) \\
\text { goal : Plus } s_{1} s_{2}=\text { Plus } t_{1} t_{2} \\
\text { show } s_{1}+[P]+\text { show } s_{2}=\text { show } t_{1}+[P]+\text { show } t_{2}
\end{array}
\end{aligned}
$$

Expression unambiguity, step case

$$
\forall s t . \text { show } s=\text { show } t \Longrightarrow s=t
$$

$$
\text { assumption : show }\left(\text { Plus } s_{1} s_{2}\right)=\operatorname{show}\left(\text { Plus } t_{1} t_{2}\right)
$$

$$
\text { goal : } \quad \text { Plus } s_{1} s_{2}=\text { Plus } t_{1} t_{2}
$$

$$
\text { show } s_{1}+[P]+\text { show } s_{2}=\text { show } t_{1}+[P]+\text { show } t_{2}
$$

$$
\forall a b u v \text {. show } a+u=\text { show } b+v \Longrightarrow a=b \wedge u=v
$$

$$
\begin{aligned}
& \text { show }(\text { Plus a } b)=[C] \# \text { show } a+[P]+\text { show } b+[D] \\
& \text { show EX }=[X] \\
& \text { show } E Y \quad=[Y]
\end{aligned}
$$

Expression unambiguity, lemma

$\forall a b u v$. show $a+u=$ show $b+v \Longrightarrow a=b \wedge u=v$

Expression unambiguity, lemma

$\forall a b u v$. show $a+u=$ show $b+v \Longrightarrow a=b \wedge u=v$
$I H_{1}: \forall u^{\prime} v^{\prime}$. show $a_{1}+u^{\prime}=$ show $b_{1}+v^{\prime} \Longrightarrow a_{1}=b_{1} \wedge u^{\prime}=v^{\prime}$ assumption: show (Plus $a_{1} a_{2}$) $+u=$ show (Plus $b_{1} b_{2}$) $+v$ goal : $\quad P l u s a_{1} b_{1}=$ Plus $a_{2} b_{2} \wedge u=v$

Expression unambiguity, lemma

$\forall a b u v$. show $a+u=$ show $b+v \Longrightarrow a=b \wedge u=v$
$I H_{1}: \forall u^{\prime} v^{\prime}$. show $a_{1}+u^{\prime}=$ show $b_{1}+v^{\prime} \Longrightarrow a_{1}=b_{1} \wedge u^{\prime}=v^{\prime}$ assumption: show (Plus $a_{1} a_{2}$) $+u=$ show (Plus $\left.b_{1} b_{2}\right)+v$ goal : $\quad P l u s a_{1} b_{1}=$ Plus $a_{2} b_{2} \wedge u=v$

$$
\begin{aligned}
& {[C]+\text { show } a_{1}+[P]+\text { show } a_{2}+[D]+u } \\
= & {[C]+\text { show } b_{1}+[P]+\text { show } b_{2}+[D]+v }
\end{aligned}
$$

Expression unambiguity, lemma

$\forall a b u v$. show $a+u=$ show $b+v \Longrightarrow a=b \wedge u=v$
$I H_{1}: \forall u^{\prime} v^{\prime}$. show $a_{1}+u^{\prime}=$ show $b_{1}+v^{\prime} \Longrightarrow a_{1}=b_{1} \wedge u^{\prime}=v^{\prime}$ assumption: show (Plus $a_{1} a_{2}$) $+u=$ show (Plus $\left.b_{1} b_{2}\right)+v$ goal : $\quad P l u s a_{1} b_{1}=$ Plus $a_{2} b_{2} \wedge u=v$

$$
\begin{aligned}
& {[C]+\text { show } a_{1}+[P]+\text { show } a_{2}+[D]+u } \\
= & {[C]+\text { show } b_{1}+[P]+\text { show } b_{2}+[D]+v }
\end{aligned}
$$

show $a_{2}+[D]+u=$ show $b_{2}+[D]+v$

A more difficult example

$$
\begin{aligned}
& S::=A \mid B \\
& A::=x A y \quad \mid z \\
& B::=x B y y \mid z \\
& \left\{x^{n} z y^{n} \mid n>0\right\} \cup\left\{x^{n} z y^{2 n} \mid n>0\right\}
\end{aligned}
$$

Not LR(k) for any k

Injectivity digression

easy:
$\forall x s y s z s . x s+y s=x s+z s \Longrightarrow y s=z s$

Injectivity digression

"hard":

$\forall x s y s z s . x s+z s=y s+z s \Longrightarrow x s=y s$

Injectivity digression

"hard":

$\forall x s y s z s . x s+z s=y s+z s \Longrightarrow x s=y s$
$I H: \forall x s y s . x s+c s=y s+c s \Longrightarrow x s=y s$
assume: as $\# c: c s=b s+c: c s$
show: as $+b s$

Injectivity digression

"hard":

$\forall x s y s z s . x s+z s=y s+z s \Longrightarrow x s=y s$
$I H: \forall x s y s . x s+c s=y s+c s \Longrightarrow x s=y s$
assume: as $+c: c s=b s+c: c s$
show: as H bs

$$
\begin{aligned}
& \text { assumption : }(\text { as }+[c])+c s \\
& \text { by } I H: \quad(b s+[c])+c s \\
& \text { as }+[c]
\end{aligned}=b s+[c] .
$$

Injectivity digression

"hard":

$\forall x s y s z s . x s+z s=y s+z s \Longrightarrow x s=y s$
$I H: \forall x s y s . x s+c s=y s+c s \Longrightarrow x s=y s$
assume: as $+c: c s=b s+c: c s$
show: as H bs
assumption: $($ as $+[c])+c s=(b s+[c])+c s$ by IH: as $+[c] \quad=b s+[c]$
$\forall x s y s z \cdot x s+[z]=y s+[z] \Longrightarrow x s=y s$

Injectivity lemma

$$
\begin{aligned}
& \text { assume : }(a: a s)+[c]=(b: b s)+[c] \\
& \text { show: } a: a s=b: b s \\
& I H: a s+[c]=b s+[c] \Longrightarrow a s=b s \\
& (a: a s)+[c]=(b: b s)+[c] \\
& a:(a s+[c])=b:(b s+[c]) \\
& a=b \wedge a s+[c]=b s+[c] \\
& a=b \wedge a s=b s
\end{aligned}
$$

Required Lemmas (besides injectivity and trivialities)

$$
\begin{aligned}
& S::=A \mid B \\
& A::=x A y \mid z \\
& B::=x A y y \mid z \\
& \left\{x^{n} z y^{n} \mid n>0\right\} \cup\left\{x^{n} z y^{2 n} \mid n>0\right\} \\
& \text { count } x(x s+y s)=\text { count } x \text { xs }+ \text { count } x \text { ys } \\
& \text { count } x A=\text { count y } A
\end{aligned} \quad \begin{aligned}
& \text { count } x A>0 \\
& \text { double }(\text { count } x B)=\text { count y } B \\
& \text { count } y A>0 \\
& \text { count } x B>0 \\
& \text { count } y B>0
\end{aligned} \quad \begin{aligned}
& \text { double } x \neq x \text { for } x>0, \text { using : } x+y=x+z \Rightarrow y=z \\
& \text { double } x=x+x
\end{aligned}
$$

Successful run

```
Proved:
    count Z (showB x) = S Zero
    count Z (showA x) = S Zero
    count Y (showA x) = count X (showA x)
    double (count X (showB x)) = count Y (showB x)
    nonZero (count x (showB y)) = True
    nonZero (count x (showA y)) = True
    count x xs + count x ys = count x (xs ++ ys)
    double (count x xs) = count x (xs ++ xs)
    count x (xs ++ ys) = count x (ys ++ xs)
    (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
    (x+y) + z = x + (y + z)
    double x = x + x
    x + y = y + x
    xs ++ [] = xs
    x + Zero = x
    unambigS {- showS u == showS v => u == v -}
    unambigB {- showB u == showB v => u == v -}
    plusInjL {- y+x == z+x => y == z -}
    injR {- v++u == w++u => v == w -}
    unambigA {- showA u == showA v => u == v -}
    plusInjR {- x+y == x+z => y == z -}
    injL {- u++v == u++w => v == w -}
    inj1 {- v++(x:[]) == w++(x:[]) => v == w -}
real 1m41.581s
user 3m1.933s
sys 0m3.747s
```


Some other (simple!) grammars

Post Correspondence Problem

$$
\begin{aligned}
& \left|a_{1}\right| a_{2}\left|a_{3}\right| \ldots\left|a_{n}\right| \\
& \left|b_{1}\right| b_{2}\left|b_{3}\right| \ldots\left|b_{n}\right|
\end{aligned}
$$

Post Correspondence Problem

$$
\begin{aligned}
& \left|a_{1}\right| a_{2}\left|a_{3}\right| \ldots\left|a_{n}\right| \\
& \left|b_{1}\right| b_{2}\left|b_{3}\right| \ldots\left|b_{n}\right| \\
& S::=A \mid B \\
& A::=x_{0}\left|a_{1} A x_{1}\right| a_{2} A x_{2}|\ldots| a_{n} A x_{n} \\
& B::=x_{0}\left|b_{1} B x_{1}\right| b_{2} B x_{2}|\ldots| b_{n} B x_{n} \\
& \operatorname{showS}(A a)=\operatorname{show} A \text { a } \\
& \operatorname{show}(B \quad b)=\operatorname{show} B b \\
& \operatorname{show} A\left(A_{1} a\right)=a_{1}+\operatorname{show} A a+\left[X_{1}\right]
\end{aligned}
$$

$$
\operatorname{show} A\left(A_{n} a\right)=a_{n}+\operatorname{show} A \text { a } \#\left[X_{n}\right]
$$

$$
\text { show } B\left(B_{n} b\right)=b_{n}+\operatorname{show} B b+\left[X_{n}\right]
$$

Post Correspondence Problem

$$
\begin{aligned}
& \left|a_{1}\right| a_{2}\left|a_{3}\right| \ldots\left|a_{n}\right| \\
& \left|b_{1}\right| b_{2}\left|b_{3}\right| \ldots\left|b_{n}\right|
\end{aligned}
$$

data $X=X_{1}\left|X_{2}\right| \ldots \mid X_{n}$
upper $:: X \rightarrow[$ Tok]
lower :: $X \rightarrow$ [Tok]
$\forall(x s::[X])$. concatMap upper xs \neq concatMap lower xs \vee null xs
concatMap $::(a \rightarrow[b]) \rightarrow[a] \rightarrow[b]$

Conclusions

- Interesting class of problems
- Very simple programs, very difficult proofs
- How can we synthesise those functions for lemmas?

