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Context Free Grammars and Induction

» Unambiguity proving of a CFG is an induction problem
» Recursion only by simple structural induction

» Can require very complicated lemmas



Expression grammar

E:=(E+E)|x|y
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E:=(E+E)|x|y

data £ = Plus E E | EX | EY

data Token=C |D|P| X |Y

show :: E — [ Token]

show (Plus a b) = [C] H show a + [P] + show b + [D]
show EX = [X]

show EY =[Y]



Expression grammar

E:=(E+E)|x|y

data £ = Plus E E | EX | EY

data Token=C |D|P| X |Y

show :: E — [ Token]

show (Plus a b) = [C] H show a + [P] + show b + [D]
show EX = [X]

show EY =[Y]

Vst.shows=showt—s=1t
Vst.s#t=> show s # show t



Expression unambiguity, step case

show (Plus a b) = [C] + show a + [P] 4 show b+ [D]
show EX = [X]

show EY =[Y]

Vst.shows=showt=s=t

assumption : show (Plus sy sp) = show (Plus t; tp)

goal : Plus s1 sp = Plus t1 t»
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Expression unambiguity, lemma
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IHy:Y U V' .show a; H v =show by VvV = a; =b AU =V
assumption : show (Plus ay ap) + u = show (Plus by by) + v
goal : Plus a1 by = Plus ay bo Nu=v
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Expression unambiguity, lemma

Vabuv.showaHu=showb-+Hv=—a=bAu=v

IHy:Y U V' .show a; H v =show by VvV = a; =b AU =V
assumption : show (Plus ay ap) + u = show (Plus by by) + v
goal : Plus a1 by = Plus ay bo Nu=v

[C] + show a1 H [P] H show ax + [D] H u
= [C] # show by + [P] + show by + [D] + v

show ay H [D] + u = show by + [D] + v



A more difficult example

S:=A|B

Ai=xAy |z

B:=xByy|z

{x"zy"|n>0} U {x"zy? | n>0}

Not LR(k) for any k



Injectivity digression

easy:

V XS ys zs . xs H ys = xs H zs = ys = zs
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“hard":

VXSyszs.xsH zs=ys+H 25 =—> xS =Vys
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assume:asHc:cs=bs+H c:cs

show: as 4 bs
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Injectivity digression

“hard":

VXSyszs.xsH zs=ys+H 25 =—> xS =Vys

IH:V xsys.xs+H cs=ys+H cs = xs=ys
assume:asHc:cs=bs+H c:cs
show : as -+ bs

assumption : (as H [c]) H cs = (bs H [c]) H+ ¢s
by IH : as H+ [c] = bs + [ ]

Vxsysz.xs4 [z] =ysH [z] = xs=ys



Injectivity lemma

assume: (a:as) H [c] = (b: bs) # [c]
show: a:as=b:bs

IH :as H[c] = bs # [c] = as = bs

(a:as)H[c] =(b:bs)+H[c]
a:(as+[c])=b:(bs+ [c])
a=bAasH[c]=bsH[c]
a=bAas=bs



Required Lemmas (besides injectivity and trivialities)
S:=A|B
Ai=xAy |z
B:=xAyy|z
{x"zy"|n>0} U {x"zy? | n>0}

count x (xs H+ ys) = count x xs + count x ys

count x A= count y A count x A>0
double (count x B) = count y B county A>0
count x B> 0
county B>0

double x # x for x >0, using . x+y=x+z=>y=2z
double x = x + x



Successful run

Proved:
count Z (showB x) = S Zero
count Z (showA x) = S Zero
count Y (showA x) = count X (showA x)
double (count X (showB x)) = count Y (showB x)
nonZero (count x (showB y)) = True
nonZero (count x (showA y)) = True
count x xs + count x ys = count x (xs ++ ys)
double (count x xs) = count x (xs ++ xs)
count x (xs ++ ys) = count x (ys ++ xs)
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)
(x+y)+z=x+(y+ 2
double x = x + x
x+y=y+x
xs ++ [] = xs
X + Zero = x
unambigS {- showS u == showS v => u
unambigB {- showB u == showB v => u
plusInjL {- y+x z -}

= z+x => y

injR {- v++u == w++u => v ==y -}

unambigh {- showA u == showA v => u == v -}
plusInjR {- x+y == x+z => y == z -}

injL {- ut+v == ut+w => v == w -}

injl {- v++(x:[1) == w++(x:[1) => v == w -}

real 1m41.581s
user 3m1.933s
sys Om3.747s



Some other (simple!) grammars

Balanced nonparentheses : Palindromes :
B:=AA P:=aPa
A=xAx | bPb

|y | a

| b
Dyck language : | €
D:=(D)D
| (D)

0



Post Correspondence Problem

|ai|a2|as|...|an|
| by | bp| b3 |...| byl



Post Correspondence Problem

|ai|a2|as|...|an|

| by | bo | b3 | ... | bn|

S:=A|B

Ai=xp|larAxi| aaAxy|...] an A xp
B:i=xo| b1 Bxi|baBxa|...| by Bxp
showS (A a) = showA a

showS (B b) = showB b

showA (A1 a) = a1 H showA a H [ X1]
showA (A, a) = ap H showA a H [ X,]

showB (B, b) = by H showB b + [ X,,]



Post Correspondence Problem

dataX:Xl\Xg\...\X,,
upper :: X — [ Tok]
lower :: X — [ Tok]

V (xs :: [X]) . concatMap upper xs # concatMap lower xs \/ null xs

concatMap :: (a — [b]) — [a] — [b]



Conclusions

> Interesting class of problems
> Very simple programs, very difficult proofs

» How can we synthesise those functions for lemmas?
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